/ /

  • linkedin
  • Increase Font
  • Sharebar

    How OCT became a 'game changer'

    Dr. Schuman discusses his role in its development, future of patient care for glaucoma

    Listen to what Joel Schuman, MD, tells  J.C. Noreika, MD, MBA, about the use of optical coherence tomography (OCT) to diagnose and follow glaucoma with patients, as well as what the future may bring for the specialty. Dr. Schuman begins by describing the early influences in his career that led to his current post. 



    Editor’s Note: Welcome to the latest installment of “Sight Lines,” a feature in which J.C. Noreika, MD, MBA, an ophthalmologist in Medina, OH, discusses trends in ophthalmology, medicine, and health care with key leaders in their fields. In this issue, Dr. Noreika talks with Joel Schuman, MD, chairman, Department of Ophthalmology, University of Pittsburgh Medical Center.


    Dr. Noreika: Dr. Schuman, you are internationally recognized not only as a glaucoma specialist but also for your role in developing optical coherence tomography (OCT), which was a game changer in ophthalmology. Can you tell us how it came to be developed?

    Dr. Schuman: OCT is a technology that almost wasn’t. It’s the result of teamwork between engineers, scientists, clinician-scientists, and physicists. It also is an example of why it is important to be aware of what is around you, especially in an innovation-rich environment.

    I became involved through serendipity. I was working in the laser lab at Mass Eye and Ear during my fellowship. I wasn’t doing a laser fellowship, but Carmen Puliafito, MD, who ran the laser lab, was kind enough to let me use the technologies however I wanted.

    I was studying the gradient of resistance flow from Schlemm’s canal through the sclera. To do that without damaging the tissue with each slice, I was using an excimer laser. The laser was a laboratory excimer laser and it only coincidentally has to do with this story because they were developing a technology in the room next door that would measure the thickness of the cornea. The technology was called Optical Coherence Domain Reflectometry (OCDR). The idea was that you need the feedback for refractive surgery. It occurred to me the technology might be able to get to the retina, in which case we would be able to measure the thickness of the retina in glaucoma and macular disease. Bill Stinson, MD, a retina specialist who was a pre-residency fellow with me in the lab, also was involved in these discussions.

    We ended up going to MIT where Jim Fujimoto, an expert in high-speed laser physics and engineering, was developing OCDR. I brought a bag of calf eyes and with David Huang, who was an MD-PhD student working with Jim, we cut them in half and looked at the back half underneath the OCDR beam to see if there would be a signal. There was! 

    New Call-to-action


    You must be signed in to leave a comment. Registering is fast and free!

    All comments must follow the ModernMedicine Network community rules and terms of use, and will be moderated. ModernMedicine reserves the right to use the comments we receive, in whole or in part,in any medium. See also the Terms of Use, Privacy Policy and Community FAQ.

    • No comments available


    View Results